Geographic and Ontogenetic Variation in the Trophic Ecology of Lingcod (*Ophiodon elongatus*) Along the U.S. West Coast

Bonnie Basnett^{1,2}

Laurel Lam¹, Richard Starr¹, Jameal Samhouri³, Scott Hamilton¹

³NOAA Northwest Fisheries Science Center Western Groundfish Conference 2023 Contact: bonniebasnett@ucsb.edu

Why study diet? – It's important!

- * Provide a better understanding of predator-prey interactions
 - * levels of connectivity
 - * prey distributions
- * Fill in data gaps on food webs
- * Valuable in Ecosystem-Based Fisheries Management (EBFM)

How is diet assessed?

* Gut Content Analysis

- * identify/enumerate prey items found in stomach
- * "snapshot"

Σ	ζ
E	

* Stable Isotope Analysis * analyze a tissue sample * ¹³C (source of primary production) * ¹⁵N (trophic level) * long-term, integrated

Complementary methods

<u>Lingcod</u>

- * ecologically & economically important
- * quick to mature and grow
- * sexually dimorphic
- * ontogenetic shifts

Results from previous lingcod diet studies:

Washington

Beaudreau & Essington 2007

Rockfishes, sculpins, greenlings, Pacific sand lance

Oregon

Tinus 2012

Pacific herring, Pacific sand lance, shrimps, octopuses

Anderson 2016

Octopuses, rockfishes, anchovies, flatfishes

Could other factors be attributing to differences in lingcod diets?

* Location

*Sex

* Size (i.e. length)

* Environmental
factors (i.e. depth)

Field Methods * Summer 2016, May 2017 * 19 ports, 6 regions * Hook & Line * Party Boats (CPFVs) * Goal: 100 Lingcod/port

Dissections & Lab Work

CREW ONLY

BONNIE B

Dietary Metrics

- * %N abundance by number
- * %W abundance by weight
- * %PN prey-specific abundance by number
- * %PW prey-specific abundance by weight
- * %O frequency of occurrence
- * %PSIRI prey-specific index of relative importance

Results – collections & gut contents

Region	Stomachs	for Analysis
Alaska	196	140
Vancouver	197	160
Columbia	427	323
Eureka	201	158
Monterey	541	239
Conception	387	238
All Regions	1,949	1,258

Describing diet using %PSIRI

- Unidentified Teleostei
- Cephalopoda
- Scorpaenidae
- Gadiformes
- Crustacea & Gastropoda
- Demersal Fishes
- Semi-Pelagic Fishes
- Pleuronectiformes

Gut Content Analysis: PERMANOVA highlights depth, region, sex

Model	Variable	df	<i>p</i> -value
7 Prey Groups	Depth	1	0.0001
	Region	5	0.0001
	Sex	1	0.0123
	Depth x Region	5	0.0001
	Residuals	754	

Differences in diet by depth

Differences in diet by region

Principal Component Analysis (PCA)

Differences in diet by sex

Stable Isotope Analysis

Region	# Lingcod Used for SIA from White Muscle	
	Tissue	
Alaska	66	
Vancouver	50	
Columbia	72	
Eureka	94	
Monterey	130	
Conception	107	
All Regions	519	

Stable Isotope Analysis: Generalized Linear Models (GLMs) highlight region, depth, sex, length

Model	Variable	p-value
Carbon	Depth	0.6
	Sex	0.2
	Length	0.9
	Region	<0.001
Nitrogen	Depth	<0.001
	Sex	0.004
	Length	<0.001
	Region	<0.001

Differences in stable isotopes by region

Alaska & Conception were more heavily influenced by pelagic carbon sources Nitrogen stable isotope values increased from North to South Larger lingcod caught at deeper depths eat higher trophic level prey

Female lingcod eat at higher trophic levels

Previous Studies

My Study

Alaska

Washington 💰

Oregon

California

Vancouver Columbia Eureka Monterey Conception

Images: ODFW, WDFW, inlandseafood.com, alchetron.com

Feeding Strategies

* Generalists and Opportunists

* Sampled during an El Niño* Pelagic Red Crabs

* Changing oceans, ...changing diets

Recommendations for future studies:

 Narrower sampling period, more locations

- * Directed prey collections
 - Prey mixing model
 - Isotope baseline to standardize across isoscapes

Take Home Messages

- Lingcod consume a wide variety of prey
 Primarily fishes, then octopuses
- * Generalists & Opportunists
- * Geographic and ontogenetic variations in diet
- * Important variables:
 - * depth, region, sex, length
- * Ecosystem-Based Fisheries Management
 * Filled in data gaps

Acknowledgements

Thesis Committee

Rick Starr Scott Hamilton Kenneth Coale

Lingcod Crew

Laurel Lam Jameal Samhouri Kelly Andrews Greg Williams Gary Longo Trevin Li Bailey Warren Kevin Critchlow Emily Doyle Nina Zimmermann All the captains, crew, volunteer anglers!

Collaborators

Makah Tribe & Sitka Tribe of AK Rachel Zuercher Bruce Finney Million Hailemichael Anne Beaudreau Aaron Galloway Joe Bizzarro MLML Community FCB Lab

<u>Funding</u>

MLML Wave Award Archimedes Scholarship Sonia Linnik Hamilton Scholarship Simpkins Family Marine Science Scholarship International Women's Fishing Association Scholarship Ryan Kelley Memorial Scholarship

Questions?

Auxiliary Studies

- * Longo et al. 2020 Genetics
- * Lam et al. 2021 Age & Growth
- * Galloway et al. 2021 Blue & Fatty Acids
- * Wood et al. 2021 Blue & Parasites

More papers in prep!

 Diet data contribution to California Current Trophic Database (CCTD) https://oceanview.pfeg.noaa.gov/cctd/

