

A Spatially Explicit Stock Assessment for Alaskan Sablefish to Better **Understand Spatiotemporal Dynamics Craig Marsh and Daniel Goethel** Co-PIs: Aaron Berger (NWFSC), Pete Hulson, and Ben Williams Collaborators: Katy Echave, Chris Lunsford, Dana Hanselman Jane Sullivan, Kevin Siwicke, Matt Cheng (UAF) NOAA AFSC, Auke Bay Labs, Marine Ecology and Stock Assessment (MESA)

Insert sexy title

What is Stock Assessment?

Purpose of stock assessment

- Characterize stock
 dynamics and trends
- Determine status relative to target or historical levels
- Describe uncertainty
- Provide scientific advice (catch specifications) for sustainable management

STAKEHOLDER PARTICIPATION

What About Space?

Spatially Stratified Models

- Multiple areas, spawning populations, or fleets interacting at various spatiotemporal scales
- Integrate fine-scale dynamics
- Improved information content from data (disaggregate)
- All parameters estimated simultaneously using single objective function
- Explicitly address assumptions ignored in nonspatial models

Spatial Good Practices

Table 1

Analyst decision points to consider when developing spatial stock assessments along with example parameterization options to choose amongst. Provided parameterization options are presented from least to most complex.

Decision Point	Parameterization Options
Biological Population	Panmictic?
Structure	Spatial heterogeneity?
	Natal homing?
	Metapopulation?
Temporal Structure	Yearly?
	Seasonal?
Spatial Resolution	Non-spatial (i.e., spatially aggregated or single
	population)?
	Spatially implicit (e.g., fleets-as-areas)?
	Spatially stratified?
	Spatiotemporal?
Fleet Structure	Use spatial fleets as proxy for availability?
	Combine fleets with similar characteristics?
	Share parameters for a given fleet across areas?
	Incorporate all fleets in all areas?
Recruitment Dynamics	Olobal density-dependence with apportionment (i.e.,
	single stock-recruit function)?
	Local density-dependence (i.e., single stock-recruit
	function per population unit)?
Initial Distribution and	Use external data (e.g., CPUE indices) to scale abundance
Scaling	by region?
	Estimate initial abundance in all areas from all population
Dimensi	unite/
Dispersal	I sound dimensional among populationa?
	Pull some ducting mining among sub genulations (i.e.
	metanonulations)?
	No dispersal but population overlap (i.e. patal homing)?
Movement	No movement?
	Time- and/or age-invariant movement?
	Oravity-based movement (i.e., estimate residency and
	make simplifying assumptions regarding emigration)?
	Random walk?
	Time periodo or age-blocko?
	Functional forme?
	Spatial autocorrelation and movement by distance?
	Habitat preference functions?
	Seasonal migrations (i.e., feeding/spawning migrations)?
	Fine-scale advection, diffusion, and taxis models?
Demographic Variation	Constant across the model domain?
	Vary by area using empirically derived values?
	Vary by population unit (i.e., genetic-based
	demographico)?
	Vary by area with current-area traits only (i.e.,
	phenotypic-based demographics)?
	vary by area with source-area and current-area traits (i.e.,
	to avoid inteasible transitions)/
	Vary by area and by population unit?

And...Why Do Sablefish Care?

Sablefish Spatial Structure

- Hypothesized to undergo ontogenetic movement patterns
- Demonstrate large movement potential
- Lack of genetic variation
- Currently assume single panmictic assessment unit across all Alaska
- Catch is apportioned to region using ad hoc survey biomass approach
- Catch and resource distribution vary across management areas

AFSC Longline Survey Relative Population Numbers (RPNs)

Initial Spatial Model

 3 area model with movement fixed based on external tag analysis

Spatially stratified, **tag-integrated model** would help understand interactions among fishery, resource, productivity, and data collection spatial structures.

Alternate spatial structures and movement assumptions should be explored!

Objectives

Contents lists available at ScienceDirect Fisheries Research journal homepage: www.elsevier.com/locate/fi

Deckfor

Spatial awareness: Good practices and pragmatic recommendations for developing spatially structured stock assessments

Daniel R. Goethel ^{a,*,1}, Aaron M. Berger ^{b,2}, Steven X. Cadrin ^{e,3}

- Develop and document a case study that follows spatial modeling good practices
- Document the process, decision points and identify good practices
- Develop a tag-integrated spatially explicit model capable of management advice
- Identify and investigate key uncertainties
- Compare with panmictic model (status quo)

Data Explorations

• High resolution explorations of all data sources

Catch

+ Observed • Reported Percentage of catch within a year • 25 • 50

All tag Recoveries

Data Explorations

- Can model partitions be reduced?
 - Maintain sex-specific model? YES
 - Growth-variation by region? NO
- Include tagging data? **YES**
 - Difficult to estimate reporting rate
 - Many tags recovered outside the region
 - But, primary source of information on movement

Survey

Data Explorations

- Regression tree analysis on length frequencies
- Can be used to support area aggregation or splitting...or differences in fleet structure (selectivity)
- Should be interpreted cautiously
- Primarily driven by management boundaries and data reporting resolution
- Split near Kodiak was similar to that from Kapur et al. 2020 that identified a potential morphometric/growth transition

Boundarys 🗖 Split: 1 🧧 Split: 3 🚔 Split: 4

Fishery

Initial Model Parametrization

- Start year: 1977 (limited gearspecific catch by area prior)
- Spatial structure: 5 regions
- Population structure: spatial heterogeneity
- Demographics: sex-specific, spatially-invariant
- Movement: time-varying
- Recruitment: single stock-recruit relationship (SSB pool) with area-specific deviates
- Tagging data directly integrated

(Very) Preliminary Results

- Validating 1-area model...
- Getting spatial model to converge...
- Alternate spatial configurations...
- Determine preliminary 'base' model for basis of simulations (most complex, data conditioned model possible)...Work in progress

Model – 1A -- 1A (no tag) – 3A – 5A \cdots Current Assessment

(Very) Preliminary Results

Methods – Phase 2

Key Model Uncertainties

- Start year (equilibrium vs. start of spatial
- Assuming closed population within AK
- Number of spatial units (1 vs. 3 vs. 5)
- Parametrizing movement (age-varying as directly estimated or using ogive)
- Modeling recruitment (and potential confounding with movement) and impact on reference points
- Likelihoods for tagging data (and other comp data)

Methods – Phase 3

Publish and Celebrate!!

- Use results from simulations to refine the spatial model
- Propose a "base-case" spatial model(s) that incorporates simulation results
- Document our process and good practices

Conclusions

Conclusions

- Spatial models are hard!
- In-depth data exploration is critical
 - Ability to easily manipulate data aggregation greatly aids analysis and ability to explore alternate model parametrizations
- Appears to be important regional dynamics that warrant monitoring
- Results are preliminary
 - Ongoing simulations are important for elucidating impacts of key uncertainties
- Iteration is key...

Further Information

- Public Gitbook documenting components of our research <u>https://github.com/Craig44/SableFishResearch</u>
- An R package containing the generalized spatial TMB population model (with documentation and unit-tests) <u>https://github.com/Craig44/SpatialSablefishAssessment</u>

QUESTIONS?

